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Shear-induced enhancement of self-diffusion in interacting colloidal suspensions
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We set up the generalized Langevin equations describing coupled single-particle and collective
motion in a suspension of interacting colloidal particles in a shear flow and use these to show
that the measured self-diffusion coefficients in these systems should be strongly dependent on shear

rate é. Three regimes are found: (i) an initial const+¢é?, followed by (ii) a large regime of é

1/2

behavior, crossing over to an asymptotic power-law approach (iii) Do — const x ¢71/2 to the Stokes-
Einstein value Do. The shear dependence is isotropic up to very large shear rates and increases with
the interparticle interaction strength. Our results provide a straightforward explanation of recent

experiments and simulations on sheared colloids.

PACS number(s): 82.70.Dd, 05.40.+j, 05.70.Ln, 47.55.Kf

L. INTRODUCTION

The large natural time scales (7 ~ ms) and (in the crys-
talline state) weak elastic constants (G ~ 10 dyn/cm?2)
in colloidal suspensions of latex spheres (“polyballs”) [1]
make it easy to drive them far from equilibrium [2] by
the application of shear rates é ~ 77! and stresses ~ G.
Shear-enhanced diffusion, a novel nonequilibrium phe-
nomenon encountered in these systems, has been stud-
ied in forced Rayleigh scattering experiments [3] and
nonequilibrium Brownian dynamics simulations [4,5], but
a theoretical explanation has been lacking. This paper
presents a theory of this effect.

Before presenting our results, we summarize the find-
ings of [3-5]. The systems were subjected to a shear flow
with velocity field

v(r) = é(y) cos(éot) y X . (1)

The flow was taken to be oscillatory for convenience. All
properties of interest can be understood by looking at the
case of steady flow, to which we will restrict all further
remarks. In the laboratory experiment [3], the shear rate
é(y) in (1) varied linearly with y, corresponding to plane
Poiseuille low. The authors measured the self-diffusion
coefficients D;, i = z,z, along  and z. The Brownian
simulations of [4] used the plane Couette flow geome-
try, ¢ = const, while [5] considered both Couette and
Poiseuille flows. Both simulations measured D, and D,.
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All these studies found an excess diffusivity AD;, relative
to that in the absence of shear, that went to zero in the
noninteracting (large concentration of ionic impurities)
limit. The authors of [3] fitted their data to AD;  |€|
(where € is an average measure of the shear rate, say, the
central velocity divided by the capillary diameter), while
the simulations, in seeming disagreement, found an é1/2
behavior for the excess diffusivity at intermediate shear
rates. In addition, [5] found a quadratic growth for €
much lower than that explored by [3,4], while [4] noted a
saturation for very large é.

We emphasize that this enhancement of diffusion by
shear is not the well-known Taylor dispersion [6]. The
latter is a purely kinematic effect, which acts only along
the flow direction, and which occurs even for a single
Brownian particle in a shear flow. Briefly, since the equa-
tion of motion for such a particle is = éy(¢) + f»(¢) and
Yy = fy(t) with f, and f, being independent white noise
sources, we see that the mean-square velocity along =
grows as the mean-square displacement along y, giving
xz? ~ 23,

We adopt a continuum, coarse-grained approach, in
which the detailed particle configurations and micro-
scopic pair potential are replaced by concentration fields
and a direct pair correlation function. The dynamics
of the concentration and momentum density fields of the
particles are described by generalized Langevin equations
including a coupling to a background shear flow. These
we solve in a mode-coupling approximation [7] without
hydrodynamic interaction (HI). Despite this apparent
limitation, they should describe not only the simulations
but the experiments as well, since the latter are in the
dilute, large-screening-length regime [3] in which the HI
can be absorbed into a redefined “bare” friction [8]. We
return at the end of the paper to a discussion of the ap-
proximations made in our treatment.

The rest of this paper is organized as follows. In the
next section, we state our results and give a qualitative,
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physical explanation of the phenomenon. In Sec. III, we
present our model in detail, and discuss in Sec. IV the
mode-coupling approach used to solve the model. We
close in Sec. V with a discussion of our results, the ap-
proximations made in obtaining them, and what remains
to be explained.

II. RESULTS AND A QUALITATIVE
EXPLANATION

A. Results

Our findings are simply summarized in Figs. 1 and 2.
Figure 1 shows the enhancement of self-diffusion arising
only from interaction effects (i.e., Taylor dispersion has
been subtracted out of the diffusivity along ). We have
used an effective hard-sphere description [9] of the colloid
for two different packing fractions. We find three regimes
in the dependence of the self-diffusion coefficient D; on
shear rate: (i) an initial quadratic growth, followed by (ii)
a substantial range of ¢'/2, crossing over to (iii) a power-
law approach D; = Dy — const x é~1/2 to the Stokes-law
value Dgy. This behavior holds for diffusion in all three
directions, and we find that the effect is isotropic until we
reach very large shear rates. This direction independence
of the enhancement is in agreement with [3,4]. As is
perhaps clearer from Fig. 2, which shows the self-energy
(i-e., the fractional excess friction as a function of shear
rate for effective hard-sphere packing fractions 0.1, 0.3,
and 0.46), the effect of shear on self-diffusion is greater
for more strongly interacting colloids (again confirming
this observation in [3,4]). While our detailed quantitative
results are obtained from a numerical evaluation of the
mode-coupling integral, analytical asymptotic arguments
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FIG. 1. Self-diffusion coefficients D;/Do under shear (for
i = x,y,2), vs €/, for three packing fractions n = 0.1,
n = 0.3, and 7 = 0.46. The initial € growth followed by
€!/2 are clearly seen, and there is some evidence for the onset
of saturation.
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FIG. 2. The self-energies T;(¢) for (i = =z,y,z) plotted
against €'/2, at two different packing fractions, n = 0.3 and
n = 0.46. The initial quadratic reduction in ¥; can be seen,
followed by an intermediate region of €*/? behavior, tending
toward saturation at higher values of shear. ’

for small and large € give, respectively, regimes (I) and
(III), and (II) can be explained as a crossover.

We are thus able to account completely for the behav-
ior observed in the simulations [5,4]. Moreover, a closer
look at the data of [3] reveals that the apparent linear be-
havior is in fact a roughly quadratic growth crossing over
to sublinear beavior at larger shear rates, in agreement
with our predictions and with [5]. There are, however,
not enough data in [3] to make a good quantitative com-
parison.

B. Qualitative arguments

The physical mechanism underlying our theory is rela-
tively simple. At temperature 7', in the absence of shear,
the self-diffusion coefficient of the colloidal particles is
equal to T/T" where the friction coefficient I' has two
contributions: a “bare” part I'g, from the solvent, and a
correction AT, from the interactions with the other parti-
cles [10]. The important contribution to AL in a strongly
interacting suspension is from concentration fluctuations
with wave number ¢ ~ go not far from the peak of the
static structure factor. Even away from equilibrium, e.g.,
in a shear flow, the relation between friction coefficient
and diffusivity can be used if the former is always taken,
by convention, to refer to the decay rate of the velocity
autocorrelation function (VACF) and not necessarily to
the inverse of a mobility. With this caution [11], we can
argue that the effect of a shear flow (1) on the picture
outlined above, qualitatively, is to eliminate the contribu-
tion to AT from all modes with relaxation rates smaller
than ¢, i.e., from all modes that are sheared before they
relax. The effective friction thus decreases as € increases.
Further, no nonanalytic behavior is expected for é — 0
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since the major contribution to AT is from the wave num-
ber region around go, not from ¢ — 0 (the nonanalytic
contribution from the hydrodynamic long-time tails [12],
although present in principle, being negligible in quan-
titative terms [13]). Lastly, it is reasonable to suppose
that, at very large ¢, all modes are cut out, and T flattens
out to its bare value I'y after passing through some kind
of crossover region. This, since the diffusivity will do the
inverse of what I does, explains qualitatively the shapes
of the curves in Fig. 1.

III. THE MODEL

Our detailed calculation begins with the continu-
ity equation for the self-number density n,(r,t) and a
Langevin equation for the self-momentum density g, (r, t)
(or self-velocity field v, = g,/mn,) of a tagged particle
of mass m in a colloidal suspension in a shear flow [14]
of the form (1), with é(y) = const and é; = 0.

on,
ot

+ V. (nsvs) =0, (2)

— éyx) + nBV;sTFs = f(r,t) . 3)

These equations are the generalization, to the case of a
sheared suspension, of those presented in [15] and [8].
Their physical content is clear. (2) merely says that the
tagged particle never disappears. In (3), the second term
on the left attempts to dissipate any difference between
the velocities of the particle and the solvent. Observe
that this term contains the bare damping constant -y,
which should be taken as equal to I'g(n,), where the
interpretation of the mean self-density (n;) in the pre-
ceding expression is as in [15]. Brownian dynamics cor-
responds to the case m = 0, so that the VACF in the
absence of interactions is § correlated in time, with the
same value of the bare diffusivity. The fact that the sol-
vent velocity field has been taken to be exactly as in
(1) means that the hydrodynamic interaction has been
ignored. The third term is simply the density of thermo-
dynamic force, F' being the free-energy functional for the
tagged-particle density field, including ideal-gas entropy
and interaction with the collective density [15]:

677iﬂ(ft) ln n,(r,t) — /d3 (Jr —x'on(r’,t) , (4)

where dn(r,t) is the deviation of the collective number
density field n(r,t) from its uniform quiescent value ng,
and c(r) is the equilibrium direct pair correlation func-
tion. The right-hand side of (3) is the usual §-correlated
Gaussian thermal noise source with variance proportional
to o times the temperature 7 = 8~!. In addition, the
Fourier transform mnq of the collective density obeys, in
the presence of shear, the (linearized) equation

Ong(t) Ong -1
ot = dqy *T

ng = (q(t) » (5)
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where 7,1 = Dog?/So(q), So(q) = [1 — noc(q)]™" is the
equilibrium static structure factor of the suspension, and
(q is a Gaussian thermal noise source with variance pro-
portional to Dog?, where Dy = T/Ty is the bare self-
diffusivity. If we linearize (2) and (3) and consider time
scales > m/I'y or, equivalently, pass to the limit of no
inertia, which is appropriate for the Brownian dynamics
simulations, then (3) simply becomes a constitutive rela-
tion: n,v, = —(T/T9)Vn,+éy X. In this approximation,
(2) reduces to the sheared fluctuating-diffusion equation,
with a diffusivity Dy:

On,q(t) . On,q
ot €4z gy +D0q Nsq = (q(t) - (6)

IV. MODE-COUPLING ANALYSIS
UNDER SHEAR

To extract the excess diffusivity, let
us(r,t) = ve(r,t) —éy % (7

be the self-velocity field relative to the local background
shear flow, and let

Cui(k,z;€) = / dt e**t / dBre~ kT (usi(0,0)us;(r,t))
o
(8)

(with no sum over repeated indices implied) be the diag-
onal part of its correlation function, Fourier transformed
in space and Laplace transformed in time. C,;(k, z;€) is
the natural correlation function to consider, since it has
the effect of Taylor dispersion subtracted out. Thus the
effect of shear on diffusion with interactions is obtained
by calculating

D;(¢é) = lim lim Cm(k z;€) (9)

z—20k—

where the limit exists because Taylor dispersion has been
removed. It is natural to define a self-energy ¥;(k, z; ¢€)
by

T

Cui(k,z;€) = P oy T e

(10)

Then
D;(é) 1
Dy 1+3%()

where ¥;(¢€) = X;(k = 0,z = 0;¢). The nonlinearity in
Eq. (3) contains one power each of n, and n, as can
be seen from (4). The contribution of this nonlinear-
ity to the VACF, and hence to X;, will thus be of the
form (ns(0) n(0) ns(t) n(t)) which, in a Gaussian decou-
pling approximation, will be the product of a self-density
and a collective-density correlation function. Explicitly,
starting from (2) and (3), one can obtain

(11)
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ddq [ 2 .
(—2;)—3/0 dt (g; + €tg29y0:y) c(q)

xc(|lq + étg.¥|)Cs(q, t; €)Ce(a, t; €)

where ¢(q) is the direct pair correlation function at equi-
librium, and C, and C. are the bare correlation functions
of the self-density (n,) and the collective density (n), re-
spectively, in the presence of shear

i(€) =

(12)

Colq, t;¢) = e HPod ~éd 5y (13)
and
—t[ B 92 —éqs 52—
Cc(q,t;é) =e (33’@7 b aq,,) no S(q;€) . (14)

In deriving Eq. (12) the peculiar nature of translation
invariance in a shear flow, viz., that {(dn(q,t)én(q’,0))
Cc(q,t;€)6(q+q’ +€étq,y) (likewise for n,) has been taken
into account. Equations (13) and (14) are obtained in a
straightforward manner from (5) and (6) by multiply-
ing by the appropriate density and taking correlations at
equal time. We evaluate the sheared static structure fac-
tor [16] S(q;¢€) as follows. First multiply (5) by n_q and
average over the noise. This leads to

(2%_1 - éqzi) S(q; €) = 2Dog? (15)
Oqy

where 7, ! has been defined above. Equation (15) is then

integrated directly, leading to

o _a(2ogl_1iq, 42
S(a;€) = / PR Dog®.  (16)
4]

The exponential decay factors appearing in (13), (14),
and (16) can be evaluated exactly, by introducing an ad-
ditional “time” variable o and using the identity [17]

e—‘"(h(Q)—b%) — e Jo doh(8) ebT‘T’%; (17)
for any function h(q) and constant b, where (@ = q +
ba qy ) is a shifted wave vector. We can integrate (12) nu-
merically, using Egs. (13) — (17) to obtain an explicit ex-
pression for the shear-dependent diffusivity. In doing the
numerical integration, we scale all lengths by the mean
interparticle distance o, and all times by 79 = 2/6Dj,
the time that a noninteracting particle takes to diffuse a
distance o. Then the dimensionless shear rate to consider
is € = €é7y.

Apart from this direct numerical calculation, several
general remarks can be made about the structure of
3;(€). First, since C,; and C. decay faster in time for é #
0 than for ¢ = 0, we expect that ¥;(¢ # 0) < X;(¢ = 0).
Secondly, ¥;(¢) is analytic for ¢ — 0: %;(é) — 32;(0) ~
—é2 for ¢ — 0 since the dominant contribution to X;
comes from nonzero wave numbers ¢ ~ go where the in-
tegrand [controlled by a combination of Sy(g), the vertex
|c(g)|?¢?, and the self-relaxation time 1/Dog?] is largest.
The hydrodynamic density modes near ¢ = 0 are sup-
pressed both by phase-space factors and the vanishing of
the vertex. Thirdly, we can do a rough asymptotic anal-
ysis on (12) for é — co. In this case, from (16), S(q;¢) —

6495

1, and C, as well as C, decay as e~ D07" (¢+¢°¢*) for most
directions of q. We must therefore evaluate an integral
of the form fooo dt f0°° dq q4[c(q)]23—qz(t+é’t3) = I(é).
This can be rewritten

1) = / ~ da ¢ [e() H(E/) (18)

where

1, z—0
const x /3,

H(z) — { (19)

T — 00
is a scaling function whose asymptotic properties are all
that concern us. Since H vanishes for large values of
its argument, the dominant contribution to the integral
for ¢ — oo is from large g(~ é'/?), so that H ~ 1, and
I(é€) ~ [372dq ¢*[c(q)]?>. The behavior of the diffusiv-
ity for large shear rates is thus determined by the ap-
proach of ¢(q) to zero for large g. For hard spheres [18]
c(q) ~ ¢~ 2 for ¢ = co. Even for the Yukawa potential
this behavior, though not asymptotic [19], seems to hold,
by visual inspection, for wave numbers beyond the peak.
If we therefore assume this form for the large-q behavior,
we see that (18) and (19) lead to X;(é) ~ ¢~1/2, at least
for shear rates such that the corresponding wave num-
bers are in the g~2 regime. Correspondingly, for large ¢,
D;(¢) will in general display a fair region of é!/2 growth
before saturating to a constant. These observations are
consistent with our detailed calculation, whose results are
summarized in Figs. 1 and 2.

We use as inputs to our numerical calculation the
Percus-Yevick [20] expressions for ¢(g) and Sop(q) for hard
spheres [9]. The general structure of the result is unlikely
to be modified by a more accurate model for the density
correlations; we have commented on this after Eq. (19).
We have evaluated (12) for three different densities, cor-
responding to packing fractions n = 0.1, n = 0.3, and
7 = 0.46, where the peak heights of So(g) are, respec-
tively, about 1.1, 1.5, and 2.6. At these packing fractions,
the unsheared self-energies are about 0.08, 0.9, and 2.5,
respectively, corresponding to the zero-shear-rate diffu-
sivities of 0.9, 0.5, and 0.3 of the bare Stokes-Einstein
value. An increase in packing fraction from 0.1 to 0.46
results in an increase of slope of about 30% in the dif-
fusivity curves, indicating the strong dependence of the
enhancement on the interaction strength. Also note that
the enhancement in the self-diffusion is isotropic, up to
large shear rates. Numerical difficulties prevent us from
going beyond € ~ 15.

V. DISCUSSION

The overall shape of our curve for D;/Dq (at n = 0.46)
compares well with that of [4] at similar values of zero-
shear-rate diffusivities. However, our results are quanti-
tatively different, the reason for which can also be under-
stood within our calculation: we obtain the enhancement
AD in a description where the tagged particle moves
through a medium of freely diffusing particles. The relax-
ation rate of the modes that the tagged particle confronts,
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and which produces the friction it experiences, is the bare
Dyq?. Shear will affect the process when é ~ Dggo2. In
the experimental system (or in a self-consistent descrip-
tion) the relevant rate is D,(¢ = 0)g®> < Dog®. Shear
effects should set in at an é which is lower than that
given by our “non-self-consistent” calculation. We can
thus account for the discrepancy mentioned above. We
suggest that the relation between suitably nondimension-
alized self-diffusivity [D,(é)/Ds(é = 0)] and shear rate
(e = ér, where 7 is the observed interparticle diffusion
time rather than that in the absence of interactions),
should be roughly universal as speculated in [4].

It should be noted that a related calculation by Kirk-
patrick [21] of the non-Newtonian viscosity of a sheared
one-component hard-sphere liquid found, numerically, a
const —é'/2 shear-thinning behavior, although no ana-
lytical arguments were offered for this. We suggest that
this too is a crossover from quadratic to inverse square-
root behavior, as an asymptotic analysis like ours will
doubtlessly reveal.

Although we have given a convincing explanation of
the enhancement of diffusion by shear, there are some
points to which we would like to draw the reader’s at-
tention. First, the simulations of [4] and [5] see an en-
hancement of the structure factor height for wave vectors
along the gradient direction. The present (and generally
used [16]) linearized treatment of the effect of shear on
collective density fluctuations cannot account for this.
Secondly, we (and the simulators [4,5]) have used all
along a noise source whose strength and statistics are
identical to those known to hold at equilibrium. While
this is doubtlessly acceptable at low shear rates, it must
surely break down in real colloids as a result of hydrody-
namic or even inertial effects. This brings us to a third
point, namely, the neglect of the hydrodynamic interac-
tion. We have argued that the shear dependence seen in
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the experiments of [3] must arise from direct interparticle
interactions and not from hydrodynamics, since the sys-
tems they look at are very dilute, and the effect is absent
when the interactions are eliminated by strong screen-
ing. However, we cannot rule out the possibility that the
hydrodynamic interaction and the strong liquidlike cor-
relations in the polyball configurations combine to give
an effect that is greater than the sum of its parts. Stoke-
sian dynamics simulations [22] find a purely hydrody-
namic contribution to the diffusivity of sheared suspen-
sions at large shear rates, scaling as éa? where a is the
radius of the colloidal particle. This is clear evidence for a
nonthermal source of noise for strongly sheared suspen-
sions. Moreover, this last contribution, linear in the shear
rate, could be present in a minor way in the experiments
of [3].

Note added in proof. A considerable while after this
paper was submitted for publication, we became aware of
independent work by O. Bychuk and B. O’Shaughnessey
[Bull. Am. Phys. Soc. 40, 460 (1995)] which appears to
be along lines that are similar to the present paper.
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